
Spectre: What do we know so far

Khan Shaikhul Hadi
dept. of Computer Science

University of Central Florida

Abstract—Spectre is a new kind of hardware vulnerabil-
ity that let attacker leak secret data exploiting speculative
execution. This is also know as speculative execution
attack. Since it’s first disclosure since Januray 2018, there
are many variant of Spectre attack that have been exposed.
Spectre attack mainly consist of two main component:
transient execution or mispredicted speculative execution
to create microarchitectural footprint and microarchitec-
tural side channel or cover channel attack that actually
leak the information to the attacker. Speculative execu-
tion is a fundamental feature in modern architectures
that provides significant performance boost while covert
channel are unintended channel that could leak infor-
mation. Spectre attack have motivated researchers from
both industry and academia to rethink the design of the
processor and hardware defense as spectre is a fundament
hardware design flaw. To make it easy to understand
spectre vulnerability and what is the current state of
our system to mitigate this threat, this paper presents
a short review. This paper talk about some fundamental
architectural properties, explain spectre attack and how
it works. This also gives information about mitigation’s
that are in place in current system and some proposals to
mitigate this threat at different stages.

Index Terms—Speculative Execution, Branch Predic-
tion, Branch Target Buffer, Out-of-Order Execution

I. INTRODUCTION

Computation performed by physical devices often
leave observable side effect that ideally may not be
readable as they are not part of regular output. Side
channel attack focused on this type of side effect
to leak information that attacker have no permis-
sion to read. While some attack exploit software
vulnerabilities, other software attack focus on hard-
ware vulnerabilities to leak sensitive information.
To launch this type of attack, attacker mast have
extensive knowledge of targeted system.

Several microarchitectural design techniques have
been introduced to increase performance in modern
CPU. Out-of-order(OOO) execution and speculative
execution reduce bubble in the architecture pipeline

and thus, provide a significant performance gain.
Out-of-order execution execute instructions out of
order but maintain order to retire each instruction
which creates an illusion of in-order execution to the
programmer. It makes programmer’s life easy, but
as programmer do not know which instruction will
be executed after which instruction in the pipeline,
it is very difficult to control what kind of microar-
chitectural effect they will produce before hand.
A user with malicious intention could utilize this
to produce unintended microarchitectural footprint
and later use side channel attack to leak secret
information. Spectre based attack is one of such
attacks where attacker utilize speculative execution
to execute unauthorized data access and combined
it with side channel attack, most commonly cache
based side channel attack to leak targeted data.

In this paper will will see a short review on
spectre vulnerability that focus on:

• spectre vulnerability and it’s working principle.
• Example of major spectre variants
• Existing mitigations
• Different type of proposed solutions

II. BACKGROUND KNOWLEDGE

A. Out-of-order execution

Most of the early processors executed instructions
in order. One of the major bottleneck of in-order
execution is that, if there is a data dependency
faced, rest of the instructions have to wait no matter
either later instructions are dependent on that data or
not. At the same time, many stages of the pipeline
will remain idle which incurs bubble and cause
wastage of resources. Out-of-order execution idea
was introduced to minimize this issue. Out-of-Order
execution utilize processors component by allowing
instructions further down the instruction stream of
the program to be executed in parallel with or before



preceding instructions based on data availability.
Modern processors internally work with micro-ops,
emulate instruction set architecture [1] and issue
micro-ops out of order to the pipeline. When micro-
ops corresponding to the instruction along with
preceding instructions are completed, the instruction
can retired and their changes are committed in the
architectural states,i.e. registers. Thus processors are
able to maintain illusion of in-order execution as
architectural states are being updated in order while
executing instructions in Out-of-Order.

Fig. 1. Simplified illustration of a single core of the Intel’s Skylake
microarchitecture.Instructions are decoded into micro-ops and exe-
cuted out-of-order in the execution engine by individual execution
units [2]

B. Speculative Execution

For many instances, future instructions stream
depends on instructions that are being issued but
yet to produce output. For example, sometimes
out-of-order execution reaches a conditional branch
instructions whose direction depends on preceding
instruction whose execution yet to be completed.
If processor wait for the outcome, it will incur
bubble in the system resulting performance loss. In
such cases, processor preserve it’s current register
state, speculate about the path of next instruction

stream and start executing along the path specu-
latively. If the prediction turns out to be correct,
the result will be committed, resulting performance
gain. Otherwise, if processor’s speculation turns out
to be incorrect, it abandons the work it performed
speculatively by reverting its register state and re-
suming along the correct path. As a result, it does
not have any architectural effect. But it may leave
some microarchitectural footprint.

Instructions that are executed due to wrong pre-
diction but may leave microarchitectural traces are
referred as transient instructions. Speculative exe-
cution on modern CPUs could run several hundred
instructions ahead as it’s limit is typically governed
by the size of the reorder buffer in the CPU.
For instance, on the Haswell microarchitecture, the
reorder buffer has sufficient space for 192 micro-
ops [1].To speculate next instruction steam, modern
processor use many techniques like branch predictor
[1], branch target buffer(BTB), data speculation etc.

C. Branch Prediction

During speculative execution, instead of ran-
domly predicting next instruction stream, processor
use branch predictors to increase probability to
predict right path. Better prediction improve per-
formance as it increases number of speculatively
executed instructions that will be committed. Mod-
ern processors use multiple prediction mechanism
for direct and indirect branches and could predict
with extremely high accuracy. For direct branches,
prediction varies between either taken or not taken
while for indirect branch, predictor have to predict
next instruction address. To compensate this, direct
jumps and calls are optimized using at least two dif-
ferent prediction mechanism [3].Intel [3] describes
that the processor predicts

• ”Direct Calls and Jumps” in a static or mono-
tonic manner,

• ”Indirect Calls and Jumps” either monotonic
manner or varying manner depending on recent
program behavior,

• ”Conditional Branches” use branch target and
predict whether the branch will be taken or not.

D. Address Spaces

Modern processors support virtual spaces to
maintain isolation among processors. A virtual ad-

2



Fig. 2. The physical memory is directly mapped in the kernel at a
certain offset. A physical address(blue) which is mapped accessible
to the user space is also mapped in the kernel space through the direct
mapping. [2]

dress space is divided into a set of pages that can be
individually mapped to physical memory through a
multi-level page translation table. Translation table
define actual virtual address to physical mapping
and also protection properties that are used to en-
force privilege checks like readable, writable, exe-
cutable and user accessible. In the context of context
switching, operating system updates register with
the next process’s translation table address in order
to implement per-process virtual address spaces thus
prevent one process to referencing data that does not
belong to it’s virtual addresses. Each virtual address
space itself is split into a user and a kernel part.
Kernel address space can only be accessed if the
CPU is running in privileged mode while normal
user address space can be accessed by the running
application. Consequently, entire physical memory
is typically mapped in the kernel [Figure 2]. So, if a
normal application can get higher privilege to read
kernel space, eventually it could read all physical
memory space that may not belong to that particular
user and cause security breach for other users.

III. SPECTRE ATTACK

Spectre attacks involve manipulating speculation
to unintentionally make victim perform operations
that would not occur during correct program execu-
tion to create microarchitectural footprint based on
secret data and then leak that confidential data to the
adversary through side-channel. Most common way
to mislead user program to execute unintentional
program execution is to manipulate branch predic-
tors. Spectre attack consist of three major step:

In first step, attacker mistrain branch predictor.
Branch prediction mechanism could be influenced
many way targeting different predictors operating

Fig. 3. Multiple mechanisms influence the prediction of di-
rect,indirect and conditional branches [4]

principle [see Figure 3]. Attacker determines what
is the mechanism of a particular predictor, create
a training program that create attacker’s desired
predictor pattern in the predictor.

if(x<array1_size)
y = array2[array1[x]*4096]

Listing 1. Bound Check Conditional Branch

In second step, attacker run victim’s program as
victim have the access privilege to read secret data.
To protect secret data, there are many checking
parameter in place in the system. But It takes time
to complete all the checking. To gain performance,
processor continue executing instructions specula-
tively. As attacker already manipulated predictor to
predict according to their desire, victim function
unintentionally read secret data and left microarchi-
tectural footprint.

Finally attacker leak secret data based on side
channel attack or covert channel attack. Even though
this is the final part of the attack, some portion of
the attack code may need to be executed to put
microarchitectural states in base state before running
victim code. After first publication of spectre attack
[4](variant 1), it opens up a new way of research
in the field of secure computer architecture. This
leads to subsequent findings of many variations of
spectre attack. If we combine that with existing
side channels attacks, it will create myriad instances
of attack. Theoretically attacker could utilize more
that hundred variant of cache based side channel
attack [5] just to leaked the confidential data that
left footprint in the cache.As it will not possible to

3



cover all attack models, we will cover four major
variants of spectre attack.

A. Variant 1: Exploiting Conditional Branch
In variant one, attacker mistrain branch prediction

to predict true, then access out of bound memory
while bypassing bound checks [4], [6].Lets consider
a array access bound check condition shown in
listing 1. This code fragment start with checking
if variable x is less than array1_size so that
memory outsize array1 could not be read. This
is a bound check to ensure unauthorized memory
access protection. In ideal case, no value of x that
would read outside the boundary of array could
execute next line. But due to speculative execution,
situation may diverted from ideal cases.This situa-
tion is illustrated in Figure 4 where we could see,
if prediction was false but in actuality it would be
true, that does not let attacker read secret value. But
if bound check is predicted true while in reality it
would be false, attacker could read secret value.

Fig. 4. If branch is predicted branch is taken, while in reality it will
not be,it will let attacker transiently read secret data. [4]

In the example of Listing 1, value of x is chosen
by attacker to be out-of-bound so that array1[x]
will indicate to a secret byte k somewhere in the
victim’s memory. array1_size and array2 are
uncached but secret byte k is cached.Also previous
operations received value of x in the bound that
leads to train the branch predictor to predict if
will likely to be true. For current operation, this
leads to speculatively read array1[x] value to
k where x is out of bound. As bound check is
yet to complete, processor speculatively continue to
execute instructions which leads to bringing value of
array2[k*4096] into the cache. As eventually

bound check will be completed and processor would
realize that x is out of bound, it will not retire
the speculatively executed instructions and made no
architectural change. But as memory related to value
of k is brought into cache, using cache based side
channel attack, attacker could leak that byte value.

B. Variant 2: Poisoning Indirect Branches
Another branch prediction mechanism is Branch

Target Buffer (BTB) that keeps track of indirect
jumps and try to predict next time indirect jump
happens based on jump instruction’s address pattern.
Attacker need to figure out before hand how BTB
of a particular system correlate jump instruction to
jump address. Then adversary mistrains the branch
predictor with malicious destination, in a way that
speculative execution continues at a location chosen
by the adversary. In the figure 5 , we see that at-

Fig. 5. The branch predictor is (mis-)trained in the attacker controlled
context A. In context B, the branch predictor makes its prediction
on the basis of training data from context A, leading to speculative
execution at an attacker-chosen address which corresponds to the
location of the Spectre gadget in the victim’s address space [4]

tacker mistrains the branch predictor in the attacker-
controlled context A. In context B, which most
likely to be victim’s context, branch target buffer
makes it’s prediction on the context A and leads to
speculative execution at the attacker chosen address
which corresponds to the location of the spectre
gadget in the victim address space. As context B run
on user’s privilege which may have higher privilege
than that attacker, attacker effectively promotes his
privilege to read higher privilege memory address.

C. Variant 3: Meltdown
In meltdown attack, attacker could read kernel

memory space data by speculatively executing read
operation utilizing out-of-order before exception

4



handling could handle unauthorized memory ac-
cess[see Figure 6]. More sophisticated attack could
utilize exception suppression to prevent termination
of attack thread.

Fig. 6. If an executed instruction causes an exception, diverting the
control flow to an exception handler, the subsequent instruction must
not be executed. Due to OOO execution, the subsequent instructions
may already have been partially executed, but not retired. However,
architectural effects of the execution are discarded. [2]

Listing 2 shows a toy example of core part of a
meltdown attack. This portion of the code use out-
of-order execution to leak kernel information which
attacker could retrieve using cache side channel
attacks. In line 5, byte value located at the target
kernel address, stored in the RCX register, is loaded
into the least significant byte of the RAX register
represented by AL. Move instruction is fetched by
the core, decoded into micro-ops, allocated and
sent to the reorder buffer. Architectural register
RAX and RCX are mapped to underlying physical
register enabling Out-of-order execution. To utilize
the pipeline, rest of the instructions from line 6 to
8 are already decoded and allocated. By the time
MOV instruction is retired, rest of the instructions
were already executed due to out of order execution
and waiting in the reservation station. As this MOV
instruction is trying to read kernel data, when it
retires, the exception is registered and the pipeline is
flushed to eliminate all results. But if line 8 already
completed it’s execution before MOV is retired, it
already created microarchitectural footprint using
rax value which contains kernel address space data.
Now attacker could mount a predefined side channel
attack like Flush+Reload [7].

As triggered exception will terminate the execu-
tion, this portion of the code must run in separate
thread if exception suppression is not used.

1 ; rcx=kernel addresss
2 ; rbx=probe array
3 xor rax, rax
4 retry:
5 mov al, byte [rcx]
6 shl rax, 0xc
7 jz retry
8 mov rbx, qword [rbx + rax]

Listing 2. Core code of Meltdown [2]

D. Variant 4: Predictive Store Forwarding
This is a variant 4 vulnerability that is recently

found in AMD processor [8] that utilize predic-
tive store forwarding(PSF) techniques (also known
as Store-to-Load Forwarding) to manipulate victim
process to forward secret data in attacker targeted
load that leads to microarchitectural footprint of that
secret data.

1 void fn(int idx){
2 unsigned char v;
3 idx_array[0]=4096;
4 v=array[idx_array[idx]*(idx)];
5 }

Listing 3. Example code for PSF where idx_array[0] will be
forwarded speculatively to read out of bound value

If we follow the code block of listing
3 with idx=0, we could see that
idx_array[idx]*(idx) becomes zero.
So array[0] will be accessed which is a
perfectly valid execution considering array is
defined propoerly. Let’s assume idx_array with
default value of zero. If we use idx=1, that leads
to executing v=array[1]*1 which itself is also
a valid execution as array[1]=0. But, if we call
function fn multiple times with idx=0, PSF will
predict that value 4096 from line 3 most likely to
be used in line 4. So when attacker call function
fn with idx=1, until idx_array[1] value is
resolved, processor will continue execution with
value 4096 which will leads to reading out of bound
memory if array length is less than 4096. By
varying value of idx_array[0] attacker could
read unauthorized memory data speculatively. This
speculative read will leave maliciously intended
microarchitectural footprint that attacker could use
to leak data.

Outside this four major variant, there are some
version of the attack that does not fall into any

5



major variant which due to space constraint, are not
explained here [9]–[12].

IV. DEPLOYED MITIGATIONS

As Out-of-Order execution and speculative execu-
tion are providing use performance gain for decades,
majority of the existing CPUs from Personal com-
puter to server to SoC in our mobile, all became
vulnerable to this threat. So, most of the major
tech companies were quick to deploy patches to
mitigate this threat even at the cost of performance
gain. One of the major solution is lfence released
by Intel [13] that will block Out-of-order execution
until values of preceding instructions are resolved.
AMD also recommends to use lfence [14]. The
safes but slowest approach to protect conditional
branches would be to add such an instruction on
the two outcomes of every conditional branches.
Microsoft also released update for C compiler [15]
that has switch Qspectre that will automatically
place lfence in the vulnerable portion of the code.
Intel and AMD also deployed microarchitectural
update [13], [14] where they let programmer enable
Indirect Branch Restricted Speculation (IBRS), Sin-
gle Thread Indirect Branch Prediction (STIBP) &
Indirect Branch Predictor Barrier (IBPB) to prevent
branch poisoning. Google suggest an alternative
approach called retpoline to mitigate branch poi-
soning where indirect branch will be replaced with
return instructions [16].There are also some appli-
cation targeted mitigation that protect secret data
when classification of secret data is not ambiguous.
Google Chrome browser have provided patch to
execute each web site in a separate process so that
one website could not read other websites data [17].
Unfortunately, even though it may prevent spectre
variant one attack, but other variants that are able
to break isolation could exploit speculative vul-
nerabilities. In order to mitigate Speculative Store
Bypass, intel let programmer to set Speculative
Store Bypass Disable(SSBD) bit [13]. Programmer
can disable speculative store bypass on a processor
by setting IA32_SPEC_CTRL.SSBD to 1. To pre-
vent predictive store forwarding vulnerability, AMD
suggested to utilize Predictive Store Forwarding
Disable(PSFD) or Speculative Store Bypass Dis-
able(SSBD) that disable predictive store forwarding
[8]. Vulnerability related to Meltdown associated

with how virtual address is mapped between user
space and kernel space. It was tested that KAISER
patch by Gruss [18] implements strong isolation
between kernel and user space resulting mitigation
of meltdown as a byproduct. It is recommended to
active KAISER in linux patch by default.

V. PROPOSED SOLUTIONS

As current solutions are either not robust or
incurs significant performance penalty, researchers
are trying to find more efficient and robust solutions.
We could classify this kind of solution in two
basis. We could classify based on at what point
protections are placed. One kind of solutions target
speculative execution itself [13], [19] and prevent
out of order execution until speculation is resolved.
Some solution propose to create different isolated
microarchitectural space to process speculative data
and are inaccessible to the programmer [20]. There
is also suggestion to prevent data load in condi-
tional block [21], [22] but their effectiveness only
proven in variant 1. Another solutions suggest to
execute speculative read but prevent later dependent
instructions [23]. Another suggestion was to pre-
vent reading secret data speculatively [19], [24] but
shortcoming is what data to be considered secret
is purely subjective.There are also some work to
detect which block to protect [25], [26] to reduce
performance penalties.

We will talk more detail about another classifica-
tion based on how to implement the protection as it
is more relevant to the complexity of deploying the
protection itself.

A. Hardware Based Solutions

lfence is too restrictive to prevent speculative
vulnerability that leads to major performance loss.
Context-Sensitive Fencing [19] propose a hardware
based solution that will monitor the activity or
the system, mostly cache hit-miss and relevant
properties to predict probable spectre type attack
pattern in the system and actively place or remove
fence for optimized performance. Non-speculative
Data Access (NDA) [23] suggest to execute spec-
ulative instruction but do not broadcast it’s exe-
cution completion. This will prevent issuing de-
pendent instruction that attacker have to use to
create microarchitectural footprint based on secret

6



data. More costly implementation proposal is to
implement InvisiSpec [20] that will create isolated
microarchitectural area to cache speculatively read
data. As it will be isolated from rest of the system
and programmer will have zero access, attacker
could not read microarchitecture footprint to leak
data. There is also machine learning based proposal
where ML hardware implementation is proposed to
detect real time potential spectre attack and active
protection mechanism [26].

B. Software Based Solutions

Software based solutions mainly target ways to
detect potential vulnerable area to increase perfor-
mance or potential secret data to deploy protection
itself. SpecFuzz [25] is one of such proposal that
suggest specialized fuzzing technique to detect po-
tential vulnerable code block that needs protection.
Speculative Load Hardening [22] suggests to use
data dependency to ensure that until speculation is
not resolved, no speculatively read data is used in
later instructions. YSNB [21] propose different vari-
ant of dependency mechanism to deploy same pro-
tection. Both cases, it will prevent attacker to create
desired microarchitectural footprint to leak data
while out-of-order execution will not be blocked. It
provides less performance penalties than lfench
but only tested for variant one vulnerabilities.

C. Hardware-Software Co-design Solution

Hardware-Software co-designed proposals are
more complex to implement. SpectreGuard [24]
propose to implement non-speculative bit in mem-
ory hardware and utilize OS to mark secure data
by updating non-speculative bits. Architecture will
not read non-speculative marked data speculatively.
Context [19] took much more complex approach.
In this case, programmer only define variables that
they want to protect. Compiler will lump them
together in same memory space, OS will assign
them in a non-speculative page table and hardware
will be designed to not to read from non-speculative
page table. This will make programmer life more
easy compared to previous solution but still both
case, main issue remains the same,”What data to be
considered secret?”

VI. DISCUSSION

Spectre arises due to hardware design flaw. This
flaw was hidden in our existing system for decades.
As this is inherited in our hardware, it is always a
possibility that there will be new ways to exploit this
vulnerability. Speculative execution became integral
part of our system that we could not consider totally
giving up on this due to significant performance
penalty. For the time being, it seems that mitigating
the risk is only way forward. But, this spectre
vulnerability changed our perspective of how we
see research in the context of performance and
security. Fixing this problem permanently will take
significant time and monetary penalty. It seems like
performance and security will always be at odd to
each other and we have to find a proper balance
between them. This leaves the question in front of
us,”How much security we are willing to give up
for the sake of performance?”.

VII. CONCLUSION

This work provides a small survey on spectre
vulnerability to give the reader a basic idea about
the threat we are facing. This paper first gives
some background knowledge on some performance
feature of computer architecture that are essential
to understand spectre type vulnerability. Later, it
explains spectre attack and how four type of spectre
vulnerability works. Later this talk about what are
the mitigation mechanism that are already deployed
and different proposal of mitigation that researchers
have brought forward.

REFERENCES

[1] A. Fog, “The microarchitecture of intel, amd and via cpus.”
http://www.agner.org/optimize/microarchitecture.pdf, 2017.
[Online].

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, and D. Genkin, “Meltdown:
Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), pp. 973–990, 2018.

[3] Intel, “”intel 64 and ia-32 architectures optimization reference
manual”,” 2016.

[4] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, and T. Prescher, “Spectre
attacks: Exploiting speculative execution,” in 2019 IEEE Sym-
posium on Security and Privacy (SP), pp. 1–19, IEEE, 2019.

[5] S. Deng, W. Xiong, and J. Szefer, “A benchmark suite for eval-
uating caches’ vulnerability to timing attacks,” in Proceedings
of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems,
pp. 683–697, 2020.

7



[6] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows:
Attacks and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[7] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution,
low noise, l3 cache side-channel attack,” in 23rd {USENIX}
Security Symposium ({USENIX} Security 14), pp. 719–732,
2014.

[8] AMD, “security-analysis-predictive-store-forwarding.pdf,”
2021.

[9] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss,
“Netspectre: Read arbitrary memory over network,” in Euro-
pean Symposium on Research in Computer Security, pp. 279–
299, Springer, 2019.

[10] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the intel
{SGX} kingdom with transient out-of-order execution,” in
27th {USENIX} Security Symposium ({USENIX} Security 18),
pp. 991–1008, 2018.

[11] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and
Y. Yarom, “Foreshadow-ng: Breaking the virtual memory ab-
straction with transient out-of-order execution,” 2018.

[12] J. Stecklina and T. Prescher, “Lazyfp: Leaking fpu register
state using microarchitectural side-channels,” arXiv preprint
arXiv:1806.07480, 2018.

[13] Intel, “Intel analysis of speculative execution
side channels.” https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-
Execution-Side-Channels.pdf, 2018. [Online].

[14] AMD, “Software techniques for managing speculation
on amd processors.” https://developer.amd.com/wp-
content/resources/Managing-Speculation-on-AMD-
Processors.pdf, 2020. [Online].

[15] A. Pardoe, “Spectre mitigations in msvc.”
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-
msvc/, 2018. [Online].

[16] P. Turner, “Retpoline: a software construct for preventing
branch-target-injection,” URL https://support. google. com/-
faqs/answer/7625886, 2018.

[17] T. C. Project, “Site isolation.”
https://www.chromium.org/Home/chromium-security/site-
isolation. [Online].

[18] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice,
and S. Mangard, “Kaslr is dead: long live kaslr,” in Interna-
tional Symposium on Engineering Secure Software and Systems,
pp. 161–176, Springer, 2017.

[19] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and
D. Gruss, “Context: A generic approach for mitigating spectre,”
in Proc. Network and Distributed System Security Symposium.
https://doi. org/10.14722/ndss, vol. 10, 2020.

[20] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and
J. Torrellas, “Invisispec: Making speculative execution invisible
in the cache hierarchy,” 2018.

[21] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer,
“You shall not bypass: Employing data dependencies to prevent
bounds check bypass,” arXiv preprint arXiv:1805.08506, 2018.

[22] C. Carruth, “Speculative load hardening,” 2018.
[23] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,

“Nda: Preventing speculative execution attacks at their source,”
in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 572–586, 2019.

[24] J. Fustos, F. Farshchi, and H. Yun, “Spectreguard: An efficient
data-centric defense mechanism against spectre attacks,” 2019.

[25] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “Spec-
fuzz: Bringing spectre-type vulnerabilities to the surface,” in
29th USENIX Security Symposium (USENIX Security 20),
pp. 1481–1498, 2020.

[26] S. Mirbagher-Ajorpaz, G. Pokam, E. Mohammadian-Koruyeh,
E. Garza, N. Abu-Ghazaleh, and D. A. Jiménez, “Perspectron:
Detecting invariant footprints of microarchitectural attacks with
perceptron,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 1124–1137,
IEEE, 2020.

8


